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Anisotropic Heisenberg Magnet with Long-Range
Interactions. Integrability and Phase Structure
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We show that the xxz Heisenberg magnet with long-range interactions in a
magnetic field, is integrable both classically and quantum mechanically. Explicit
expressions are given for the involutive integrals of the motion. The nature of
the spectrum and the ground state are clarified and the partition function is
calculated exactly in the thermodynamic limit. A detailed study of the phase
structure of the system is also performed.

1. INTRODUCTION

The last two decades have witnessed an upsurge of interest in and

intensive study of integrable systems, in classical and quantum 1 1 1-

dimensional field theories, in quantum spin chains and their generalizations,

and also in 2-dimensional statistical mechanical models (see refs. 1±3 for

reviews and further references). Investigation of this area, besides paving the

way for generalizations to higher dimensions, has revealed many beautiful
mathematical structures, which lie behind the notion of integrability. On the

physical side, the study of integrable models, especially in statistical mechan-

ics, has deepened our knowledge of phase transitions in two dimensions. As

far as quantum lattice systems with local interactions are concerned, the R-

matrix formalism and the associated algebraic Bethe ansatz has turned into
a paradigm for exactly solvable models. The most famous examples of this

type are the isotropic and anisotropic Heisenberg chains, which have su(2)

and suq(2) symmetries, respectively. The systems referred to above have local
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interactions. Other systems with long-range inverse-square or inverse-sine-

squared interactions have also been studied intensively [4±6]. The system

we study in this paper is much simpler than those described above, and
although a problem as simple as the one we are concerned with may have

been well studied by various means, we have preferred to look at this problem

from the view of integrable systems and see how far the knowledge of

integrability allows one to proceed in determination of the exact properties

of this system. It is the aim of the present paper to study a system of N
spins interacting with each other (with equal coupling) and with an external
magnetic field.

2. CLASSICAL INTEGRABILITY

The system under consideration consists of N vectors Si (i 5 1,2,. . . ,N ),
interacting by the Hamiltonian

H 5 2
J

N o
i, j

Si ? Sj 2
A

N o
i, j

S z
iS

z
j 2 B o

i
S z

i (1)

with the Poisson brackets

{S a
i , S b

j } 5 e ab
c d ij S

c
i (2)

Here J is a real parameter (not necessarily positive) and the parameters A and

B control the anisotropy and the strength of the magnetic field, respectively. In

Eq. (2) and in the rest of the paper, a contraction between an upper and a
lower index means summation over that index. To show that this system

describes an integrable dynamical system in the Liouville sense, we define

the global variables [7]

Xa
m 5 o

m

i 5 1
Sa

i (3)

It is now easily verified that the new dynamical variables satisfy the Pois-

son brackets

{Xa
m, X b

n} 5 e ab
c Xc

(m,n) (4)

where (m, n) denotes the minimum of m and n. In fact, for each fixed n, the

variables Xa
n satisfy among themselves the Poisson brackets pertaining to the

Lie algebra su(2). Constructing for each copy the Casimir function

Cm 5 d ab Xa
m Xb

m (5)
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we obtain

{Cm , X b
n} 5 2 e b

ac Xa
m Xc

(m,n) (6)

which means that the Casimir function of one copy of the algebra has nontriv-

ial Poisson bracket with the coordinate variables of other copies. Despite this

fact, one obtains after a simple calculation the following result:

{Cm , Cn} 5 4 e abc Xa
m Xb

n Xc
(m,n) 5 0 (7)

Furthermore , from (6) one obtains that all the Casimir functions Poisson

commute with the coordinate variables Xa
N : 5 (XN , YN , ZN):

{Cm , Xb
N} 5 2 e b

ac Xa
m Xc

m 5 0 (8)

We also note that the Hamiltonian (1) can be written compactly as

H 5 2
J

N
CN 2

A

N
Z 2

N 2 BZN (9)

From (7) and (8), we obtain that the functions C2, C3,. . . , CN , and ZN are N
integrals of motion in involution with each other, and the Hamiltonian is a

function of these integrals. Note that the function C1 should not be counted

among the integrals of motion. The above analysis proves the integrability

of the system in the classical case.

3. QUANTUM INTEGRABILITY

We now consider the quantum version of the model, where the variables

Si are replaced by the operators SÃi acting on the Hilbert space * 5 h ^ N. The

local Hilbert space at each site carries the spin-j representation of the su(2)
algebra, and the local operators SÃi act nontrivially only on the ith site:

SÃai 5 1 ^ 1 . . . 1 ^ SÃa ^ 1 . . . 1 ^ 1 (10)

The Poisson brackets (2) are replaced by the su(2) Lie brackets:

[SÃai , SÃbj ] 5 i e ab
c SÃcj d ij (11)

The global operators XÃn are defined as in (3):

XÃam 5 o
m

n 5 1

SÃai (12)

with the commutation relations

[XÃam, XÃbn] 5 i e ab
c XÃc(m,n) (13)
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Straightforward calculations now lead to the following result:

[CÃm , XÃbn] 5 2 e b
ac(XÃ

a
m XÃc(m,n) 1 XÃc(m,n) XÃ

a
m) (14)

from which we obtain

[CÃm , CÃn] 5 i e abc{XÃbn[XÃam XÃc(m,n) 1 XÃc(m,n) XÃ
a
m] 1 [XÃam XÃc(m,n) 1 XÃc

(m,n) XÃ
a
m]XÃbn} (15)

For definiteness, let us take m , n. Then the index (m, n) is equal to m and

the expression in the brackets is obviously symmetric under the interchange

of a and c, so that it gives zero when contracted with e abc. Therefore we have

[CÃm , CÃn] 5 0 (16)

Furthermore , from (14) we obtain

[CÃm , XÃbn] 5 0, m # n (17)

In particular, all the Casimirs commute with the operators XÃN:

[CÃm , XÃa
N] 5 0, " m (18)

The collection of the operators C2, C3, . . . , CN , and ZN 5 X 3
N are N commuting

operators and the Hamiltonian can be expressed in terms of these operators

as in (9). This proves the quantum integrability of the system, for any spin.

4. THE SPECTRUM

In the rest of the paper we restrict ourselves to the spin-1/2 representation.
The integrable structure of the model allows us to construct the simultaneous

eigenstates of the operators H, C2, . . . , CN , and ZN. Denoting these states

by C j1, j2,..., jN,mN , we have

CÃk C j1, j2,..., jN,mN 5 jk( jk 1 1) C j1, j2,..., jN,mN (19)

ZÃN C j1, j2,..., jN,mN
5 mN C j1, j2,..., jN,mN (20)

and

HÃC j1, j2,..., jN,mN
5 F 2

J

N
jN( jN 1 1)

2
A

N
m2

N 2 BmN G C j1, j2,..., jN,mN (21)
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The subspaces

e j2, j3,..., jN : 5 { C j1, j2,..., jN,mN | mN 5 2 jN , . . . , jN}

are in one-to-one correspondence with the paths on the Bratelli diagram for

the su(2) algebra (Fig. 1). Each path in the diagram corresponds to a definite
pattern of fusion and reduction of su(2) representations on the consecutive

sites of the lattice. If N is even, the leftmost path corresponds to the one-

dimensional eigenspace e 0,1/2,0,1/2,0,...,1/2,0 , and if N is odd, it corresponds to

the two-dimensional eigenspace e 0,1/2,0,1/2,0,...,1/2 . The rightmost path always

corresponds to the 1±2 N( 1±2 N 1 1)-dimensional eigenspace e 1,3/2,2,..., N/2.

Next, we need the multiplicity of the representation with jN 5 S in the
tensor product of N spin-1/2’ s. This is equal to the number of paths beginning

at the top of the Bratelli diagram and ending at the point of spin S at the

Nth level. They can be easily calculated as follows: Consider Fig. 2. This is

a modified version of Pascal’s triangle. It is easy to see that that part of this

triangle which is inside the dashed lines denotes the required multiplicities.

The numbers written in the triangle obey the same rule as those in Pascal’s
triangle, namely each number is the sum of two numbers in the upper row

adjacent to it. The only difference is in the boundary conditions of this

triangle. In Pascal’ s triangle, the sides of the triangle are both equal to 1,

whereas here the left side is equal to 2 1. Our aim is now to calculate the

Fig. 1. The Bratelli diagram for su(2) algebra.
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Fig. 2. A modified Pascal triangle.

numbers of this triangle, which are denoted by g(N, S). Here N is the number

of the row (starting from N 5 1 in the second row), and S 5 N/2 2 k, where

k is an integer, which is equal to zero at the right side and increases by one

each time we go one step toward the left.
However, as the recursion relation determining g is linear, g can be

written as

g(N, S) 5 g1(N, S) 2 g2(N, S) (22)

where g1 and g2 are the solutions of the same recursive equation with different

boundary conditions. The boundary condition for g1 is zero at the left side

and one at the right side; that of g2 is the reverse. It is easy to see that with
these boundary conditions, g1 and g2 are in fact coefficients of the binomial

expansion, that is,

g1(N, S) 5 1 N

N/2 2 S 2
g2(N, S) 5 1 N

N/2 1 S 1 1 2 (23)

So, one obtains

g(N, S) 5 1 N

N/2 2 S 2 2S 1 1

N/2 1 S 1 1
(24)

This expression gives the degeneracy of all the energy levels. With these
preparations we will be able to calculate exactly the partition function of the

system in the thermodynamic limit.

5. STATISTICAL PROPERTIES OF THE SYSTEM

Our next task is to calculate the partition function corresponding to the

Hamiltonian (1). This is
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Z 5 o
N/2

S 5 0,1/2
o
S

M 5 2 S
g(N, S) exp H b F J

S(S 1 1)

N
1 A

M 2

N
1 BM G J

5 o
N/2

S 5 0,1/2
o
S

M 5 2 S
g(N, S) exp H N b F J z 1 z 1

1

N 2 1 A m 2 1 B m G J (25)

where S is the total spin of the system, M is the magnetization of the

system, i.e., the third component of the spin, and z and m are the densities

corresponding to S and M, respectively: z : 5 S/N and m : 5 M/N. In the

thermodynamic limit, the sum is determined by its largest term. Using the

Stirling approximation for N!, and denoting b J, b A, and b B by j, a, and b,
respectively, we have

Z 5 o
S

o
M

exp H N F j z 2 1 a m 2 1 b m 2 1 1

2
2 z 2 ln 1 1

2
2 z 2

2 1 1

2
1 z 2 ln 1 1

2
1 z 2 1 O 1 1

N 2 G J
5 : o

S
o
M

exp[Nu( z , m )] (26)

A detailed analysis of the maxima of the function u( z , m ) depending on the

value of the parameters is now in order. We assume, without loss of generality,

that b $ 0. Two cases may happen.

Case 1. a is nonnegative. Here u( z , m ) attains its maximum at m 5 z ,
which means that the total spin aligns itself in the direction of the magnetic

field and there is no quantum fluctuation in the components of the magnetiza-

tion perpendicular to the magnetic field. Denoting by uÄ ( z ) the value of u( z ,

m Å ) where m Å maximizes u( z , m ), we have

Z 5 o
S

exp[NuÄ ( z )]

5 o
S

exp H N F ( j 1 a) z 2 1 b z

2 1 1

2
2 z 2 ln 1 1

2
2 z 2 2 1 1

2
1 z 2 ln 1 1

2
1 z 2 G J (27)



978 Karimipour and Khorrami

To find the value of the magnetization z Å which maximizes uÄ ( z ), we set

duÄ

d z
5 2( j 1 a) z 1 b 1 ln

1 2 2 z
1 1 2 z

(28)

An analysis of this equation reveals the following values for z Å depending on

the value of the magnetic field b and the parameter j 1 a:

1a. Nonzero magnetic field (b . 0). In this case the equation

duÄ

d z
5 0 (29)

has only one solution for z , which is between 0 and 1/2.

1b. Zero magnetic field, b 5 0. In this case, zero is always a solution

for z . However, if j 1 a . 2, this value of z leads to a minimum for uÄ . In

this case, there is another solution, which is between 0 and 1/2, and makes
uÄ maximum, so that we have to consider two more subcases:

1b1. j 1 a , 2. This yields

z Å 5 0 (30)

1b2. j 1 a . 2. In this case, z Å is the nonzero solution of (29).

Case 2. a is negative. In this case the value m Å at which u( z , m ) takes

its maximum depends on z :

m Å 5 H 2 b/(2l;a), 2 b/(2a) , z
z , 2 b/(2a) . z

(31)

and

uÄ ( z )

5 5
j z 2 2

b2

4a
2 1 1

2
2 z 2 ln 1 1

2
2 z 2 2 1 1

2
1 z 2 ln 1 1

2
1 z 2 , 2

b

2a
, z

( j 1 a) z 2 1 b z 2 1 1

2
2 z 2 ln 1 1

2
2 z 2 2 1 1

2
1 z 2 ln 1 1

2
1 z 2 , 2

b

2a
. z

(32)

which leads to

duÄ

d z
5 5 2j z 1 ln

1 2 2 z
1 1 2 z

, 2
b

2a
, z

2( j 1 a) z 1 b 1 ln
1 2 2 z
1 1 2 z

, 2
b

2a
. z

(33)
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If z 5 2 b/(2a), we have

2
jb

a
1 ln

1 1 b/a

1 2 b/a
5 0 (34)

We then have to consider the following subcases:

2a. j . (a/b) ln [(1 1 b/a)/(1 2 b/a)]. In this case, z is the nonzero

solution of the equation

2j z 1 ln
1 2 2 z
1 1 2 z

5 0 (35)

Fig. 3. Phase diagram for b . 0.
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2b. j # (a/b) ln [(1 1 b/a)/(1 2 b/a)]. Here z is the solution of

2( j 1 a) z 1 b 1 ln
1 2 2 z
1 1 2 z

5 0 (36)

To summarize, in the general case b . 0, there are two regions I and

II in Fig. 3, and we have

H ( z . 0, depending on j, a, and b; m 5 z ), I

( z . 0, depending only on j; m 5 2 b/(2a)), II
(37)

If b 5 0, the region I splits into two subregions. In this case, it is better to

work in the j ± a plane (Fig. 4). We have

Fig. 4. Phase diagram for b 5 0.
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5
( z 5 0; m 5 0, I.I

( z . 0, depending on j and a; m 5 z ), I.II

( z . 0, depending only on j; m 5 0), II
(38)

6. PHASE DIAGRAMS OF THE SYSTEM

We now consider the phase diagrams of the system using the two control

parameters B and T. Figures 5±7 show the isomagnetic fields, and Figs. 8±10
show the isotherms of the system.

Figure 5, in which J . 0 . A, shows a transition curve, qsr. For B .
2 A, the magnetization is parallel to the magnetic field. For B , 2 A, the

magnetization is parallel to the magnetic field at high temperatures. But at

a certain temperature the component of the magnetization parallel to the
magnetic field becomes constant and the total magnetization itself becomes

B independent. This phase transition corresponds to a transition from region

I to region II in Fig. 3. There is a spontaneous magnetization for kT , J/2.

Figure 6, in which J, J 1 A , 0, shows a transition at zero temperature:

for B . 2 J 2 A, the zero-temperature magnetization is 1/2. For magnetic

fields less than that, it is less than 1/2. The magnetization is always parallel
to the magnetic field. There is no spontaneous magnetization.

Figure 7, in which A, J 1 A . 0, shows a spontaneous magnetization

for kT , (J 1 A)/2. The magnetization is always parallel to the magnetic field.

Figure 8, in which J . 0 . A, shows a transition curve, ors. For kt .
J/2, the magnetization is parallel to the magnetic field, and there is no

Fig. 5. Isomagnetic fields for J . 0 . A. qu: m and z for B ® ` . qt: m and z for B 5 2 A.

qst: z for 0 , B , 2 A. pst: m for 0 , B , 2 A. qsrt: z for B 5 0. ort: m for B 5 0.
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Fig. 6. Isomagnetic fields for J, J 1 A , 0. qs: m and z for B ® ` . qrt: m and z for B .
2 J 2 A. qt: m and z for B 5 2 J 2 A. pt: m and z for 0 , B , 2 J 2 A. ot: m and z for B 5 0.

spontaneous magnetization. For kT , J/2, the magnetization is parallel to

the magnetic fields at high fields. But at a certain magnetic field the component

of the magnetization parallel to the magnetic field becomes proportional to

the magnetic field and T independent; the total magnetization becomes con-
stant. This phase transition corresponds to a transition from region I to region

II in Fig. 3.

Fig. 7. Isomagnetic fields for A, J 1 A . 0. pr: m and z for B ® ` . pt: m and z for 0 ,
B. pqt: m and z for B 5 0.
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Fig. 8. Isotherms for J . 0 . A. qsv: z for kT 5 0. orsv: m for kT 5 0. prv: z for 0 , kT ,
J/2. orv: m for 0 , kT , J/2. ov: m and z for kT 5 J/2. ouv: m and z for kT . J/2. ot: m and

z for kT ® ` .

Figure 9, in which J, J 1 A , 0, shows a transition at zero temperature:

for B . 2 J 2 A, the zero-temperature magnetization is 1/2. For magnetic

fields less than that, it is less than 1/2. The magnetization is always parallel

to the magnetic field. There is no spontaneous magnetization.

Figure 10, in which A, J 1 A . 0, shows a spontaneous magnetization
for kT , (J 1 A)/2. The magnetization is always parallel to the magnetic field.

Fig. 9. Isotherms for J, J 1 A , 0. oqu: m and z for kT 5 0. ou: m and z for 0 , kT.

ot: m and z for kT ® ` .
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Fig. 10. Isotherms for A, J 1 A . 0. qs: m and z for kT 5 0. ps: m and z for 0 , kT , (J 1
A)/2. os: m and z for kT 5 (J 1 A)/2. ors: m and z for kT . (J 1 A)/2. ot: m and z for kT ® ` .
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